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Abstract. Experimental and theoretical studies in large, ionized helium clusters have suggested the pres-
ence of structures in which a diatomic (and occasionally triatomic) charged molecular core is surrounded
by nearly neutral atoms which are bound to it by weaker forces. The understanding of the interactions
between the He+

2 system and one of the neutral He atoms of the cluster is therefore crucial in order to
understand the microscopic dynamics of the post-ionization evolution. The first part of this work [Eur.
Phys. J. D 21, 323 (2002)] reported the Potential Energy Surface (PES) for the interaction between the
He+

2 and an He atom and described its bound states. Since dynamical calculations require a more extensive
variable range of the relevant PES to be sampled, we present here a further, more detailed study in which
we span a larger configurational space for the three internal coordinates of the title system. In particular,
we have included a greater range of internuclear distances of the molecular ion. The resulting ab initio
values have been numerically fitted via an analytic expression in terms of the three internuclear distances
within the He+

3 system. As a first step in the analysis of the dynamics we have calculated the vibrational
coupling terms which involve the ionic core vibrational wave functions and the interaction of the latter
molecule with the external helium atom. They reveal interesting features and properties that are here
discussed.

PACS. 34.20.Mq Potential energy surfaces for collisions – 34.50.Ez Rotational and vibrational energy
transfer – 36.40.Wa Charged clusters

1 Introduction

The peculiar environment existing in ionized He clusters
is currently an intriguing research field where many fun-
damental questions are still open. These clusters can fur-
ther act as hosts to various molecular dopants, thereby
helping us to better understand solvation processes. From
the fairly large amount of theoretical and experimental
works carried out in the last 20 years in this field [2–12]
it emerges quite clearly the specific interest on the micro-
scopic mechanism for the localization of the charge pro-
duced by a primary ionization event. It is known, in fact,
that when helium clusters are ionized by electron or pho-
ton impact, the first process is the formation of a single
atomic ion somewhere in the cluster. The behaviour of
the whole cluster after ionization is still under debate be-
cause of the large excess of deposited energy which has
to be dissipated. The aggregate probably evolves through
some metastable situation where a small ionic core is be-
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ing formed [5]. The latter is made up by a restricted num-
ber of atoms that share the charge, while the remaining,
almost neutral atoms are bound to it via induction and
dispersion forces. The diatomic or triatomic core, when
formed, is likely to be in a highly excited vibrational state
from which it decays through its interactions with the sur-
roundings atoms and leads to dissipating its excess energy
via evaporation of the host cluster atoms. This picture, al-
though only partially confirmed by the experimental ob-
servation [5], may be used to explain the large rates of
evaporation of He droplets after the ionization event and
the fact that the smallest fragments He+

2 /He+
3 (with a

large predominance of the first one) give rise to strong
peaks in the mass spectra [5]. The former part of the
present study [1] described the Potential Energy Surface
(PES’s) and the bound states of the He+

2 (r)−He system at
different interatomic distances r. In the same work [1] we
also calculated the vibrational levels of the He+

2 molec-
ular ion, obtaining for it a total of 23 bound states. In
the present extension we intend to generate the relevant
interaction forces to be employed for the corresponding
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dynamical computations reported in the following paper
[13]. We also provide here for the first time a global fit of
the full three-dimensional Potential Energy Surface of the
He+

3 system, obtained from an extended ab initio sampling
of the configurational points, while previous works pro-
duced results for more limited configurational regions [14,
15].

The possible efficiency of the vibrational relaxation
step is certainly a crucial but still unknown quantity, al-
though our earlier calculations on this very system, at
ultra-low temperatures, have already found large efficiency
for the simpler rotational deexcitation events [16]. The
first step in our study therefore requires to evaluate the
rovibration-to-translation (R,V-T) coupling potential that
stems from the three-dimensional PES convoluted over
asymptotic He+

2 vibrational functions ϕi(r) for different
states of the diatomic moiety: the above procedure will be
discussed in detail in Section 4.

2 The extended ab initio potential energy
surface

In the earlier PES calculations [1] we used Jacobi coordi-
nates, shown in the inset of Figure 1. For the equilibrium
distance of He+

2 we have found that the angular anisotropy
was rather smooth so that the whole surface could be
mapped by a fairly small angular grid of only four val-
ues of θ between 0◦ and 90◦. In fact, when expanding the
ab initio points in terms of Legendre polynomials

V (R, θ) =
∑

λ

Vλ(R)Pλ(cos θ) (1)

it was possible to generate quite accurately all angular
configurations by recombining these coefficients and us-
ing just a few λ values (λmax = 6). When one modifies
the dimer interatomic distance, however, the correspond-
ing topology of the PES experiences marked changes due
to the presence, for certain orientations and distances, of
non-adiabatic couplings with the upper 2B1 excited state.
The PES therefore shows a more complicated shape with
strong angular anisotropy that requires, to be well de-
scribed, a greater number of angular points. We therefore
carried out new calculations with the same basis set and
method as before (CCSD(T), aug-cc-pVQZ [17]), obtain-
ing a total of 10 different angles, from 0◦ to 90◦, for nine r
values ranging from 1.0 a.u. to 8.0 a.u. and for several
R values from 0.0 up to 15.0 a.u. At that R value we ob-
tain a satisfactory merging, for any orientation, with the
long range polarizability curve

V (R)(a.u.) = −αpol/(2R4), (2)

where αpol = 1.38 a.u.3 [18] is the He experimental po-
larizability (see also [1]). In each radial curve the ∆R
spacing varied from a minimum of 0.1 a.u. up to a maxi-
mum of 0.5 a.u., depending on the angular position. The
total number of directly computed points for the three-
dimensional (3D) PES was about 5,000. They are available
on request from the authors.
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Fig. 1. He+
3 computed 3D Potential Energy Surface reported

in each panel at different angular values and for fixed r values,
as a function of R, from θ = 0 (bold curve) to π/2 (dotted
curve). Distances are in a.u. and energies in cm−1.

Some cuts of the resulting 3D PES are shown in Fig-
ure 1 at some selected values of r: in each panel r is kept
fixed and the PES is reported for a set of θ values. The
collinear geometry (θ = 0◦) is marked by a thicker line,
the perpendicular one (θ = 90◦) with a dotted line and
the curves with the deepest minima are labelled by their
angular values. One sees that, excluding the case of the
compressed bond (r = 1.5 a0), all other curves present
their minima in the collinear geometries.When consider-
ing r = 1.5 (or any other geometry where the core bond
is shortened), the behaviour is inverted: the minimum en-
ergy configuration is the C2v geometry. One further sees
that for the stretched-bond configurations all the curves
representing angles different from θ = 0◦ become more at-
tractive. Another important feature shown by our calcula-
tion is the appearance for θ ∼ 90◦ of a series of cusps in the
short radial range and for geometries in which the molec-
ular bond is stretched, as, for example, in the r = 3.0 a0

(second panel on the left from the top of Fig. 1). As already
discussed in our previous work [1], the cusps are due to the
crossings between the ground 2A1 and the first excited 2B1

states in the C2v geometry. This crossing is always present
in the surfaces and provides an additional fragmentation
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Fig. 2. He+
3 PES contour map in Carte-

sian coordinates at the equilibrium r
distance (left) and in a stretched molec-
ular configuration (right, r = 4.0 a.u.).
Equidistant contour lines are traced re-
spectively from −100 cm−1 with spac-
ing 100 cm−1 (left panel) and from
−800 cm−1 with spacing 800 cm−1

(right panel). The oscillations shown in
the right panel are due to the additional
interpolation by the visualization soft-
ware.

channel (He2 + He+), albeit at higher asymptotic ener-
gies. However, while for small values of r it lies in a much
higher repulsive region and doesn’t modify the shape of
the curve in its attractive region, for larger r values the
difference between the asymptotic energies of the corre-
sponding two possible fragments, He+

2 (r) and He2(r), be-
comes smaller thereby making the crossing to appear at
lower energies.

In the right panel of the second row of Figure 1 we can
see the situation at r = 4.0 a0: the shape of the surface is
completely changed. The repulsive barrier for geometries
near the collinear one is replaced by nuclear repulsion cusp
due to the steric repulsion of two helium atoms. In these
geometries the system is close to its global minimum [1]
and the interaction is very strong: in the large-angle ge-
ometries there is no turning point. Further stretching of
the r coordinate (two bottom panels of Fig. 1) brings the
steric cusp, which survives only for a narrow angular cone
around θ = 0◦, to larger R distances. It is worth noting
here that there is also a large energy gain when we increase
the r distances beyond the equilibrium value (∼2 a0).
Indeed, the net interaction increases by one order of mag-
nitude when going from 2 a0 to 3 a0.

In Figure 2 we have drawn a contour plot in cylin-
drical coordinates of the “rigid rotor” PES’s for two val-
ues of the internuclear distance r. When comparing them,
one sees how the repulsive core moves to larger radial dis-
tances, generating the marked steric cusps that we have
commented on before. Less evident, but still visible on the
right panel of Figure 2, is the presence of a second cusp
due to the crossing of the first two electronic states at the
geometries corresponding to an equilateral triangle (D3h).
For completeness, the angular dependence of the surface,
is presented in Figure 3 for a set of selected R values and
for two r distances (4.0 and 6.0 a0).

An interpolation of the whole set of computed ab ini-
tio points was carried out by keeping the physical pic-
ture of the two distinct partners (He+

2 and He) thereby
using the Jacobi coordinates representation. After inter-
polating with cubic splines the R curves at each geometry
(r, θ) within the region spanned by the ab initio points,
[0, 15 a0], and testing that this representation doesn’t
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Fig. 3. Angular dependence of the PES for two of the stretched
configurations of the molecular core (r = 4 and 6 a0), shown
for the short (upper panels), medium and long (lower panels)
R range of values (distances in a0).

cause spurious oscillations, the interpolated curves were
merged with the spherical dipole polarizability long-range
potential (Eq. (2)). In the angular variable the interpo-
lation was performed using the multipolar expansion of
equation (1), from which we obtain

V (r, R, θ) =
∑

λ

Vλ(r, R)Pλ(cos θ). (3)

In Figure 4 we show selected Vλ(r, R) curves from the PES
at some fixed r values and for the first eight λ values. In
the first panel we can clearly see the large contributions
from the spherical term (λ = 0) which persist also for
stretched configurations. We further see in the other pan-
els that the next two terms are the most anisotropic and
also very important. However, when we look at the lowest
panel on the right, we realize that this expansion does not
satisfactorily converge. In fact, this kind of interpolation
presents discontinuities in the inner regions for some of the
stretched dimer configurations, as we shall further discuss
below.
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Fig. 4. Selected Vλ(r,R) curves for the He+
2 −He PES at some

fixed r values.

3 The analytic fitting procedures

In order to correctly describe this triatomic system, it
is therefore more expedient to switch to internal coor-
dinates R1, R2, R3 (the distances between each of the
three atoms), by simple trigonometry. In order to gener-
ate a many-body (MB) fit of the computed potential en-
ergy surface V (R1, R2, R3), we have followed the Aguado-
Paniagua prescription [19] and isolated the three-body
(3B) contribution from the two-body (2B) ones:

VABC(R) =
3∑

i

V
(1B)
i +

3∑

i

V
(2B)
i (Ri)+V (3B)(R1, R2, R3)

(4)
where the term labeled with (1B) contains the electronic
energies of the 3 isolated atoms (−7.8048784 a.u.) and the
terms labeled (2B) represent the interactions between each
couple of atoms. Since we are dealing with an ionic part-
ner, we need also to take into account the specific long-
range behaviour of the system. The long-range interac-
tion is also made up of three- and two-body contributions
where the charge-polarizability interaction is the leading

one. It is possible to define the V 3B term by subtract-
ing three, non-identical V 2B contributions from the total
potential. Two of the diatomic interactions are taken as
the charged dimer, VHe+

2
(Ri) while the third is the neutral

dimer, VHe2(Rj). Thus, at each configuration (Ra, Rb, Rc)
the “neutral” interaction by convention is assigned to the
largest among the Ri values, that is

V (3B)(Ra, Rb, Rc) = V (Ra, Rb, Rc) − V (1B) − V
(2B)

He+
2

(Ra)

− V
(2B)

He+
2

(Rb) − V
(2B)
He2

(Rc), (5)

with
Rc ≥ Rb ≥ Ra.

Using this definition, the 3-body interaction, does not con-
tain any long range contribution and can be easily fit-
ted using and Aguado-Paniagua type expansion [19]. The
quality of the above choice depends on how well the resid-
ual interaction will sum back to the total potential once
added to the 2 body terms.

3.1 The (2B) contributions

The VHe2(Rj) potential was calculated again, for consis-
tency with the rest of the PES, using CCSD(T) with aug-
cc-pVQZ basis set. We computed 39 points from r = 1.0
to 12.0 a0. The present results turned out to have only a
10% difference with the best potential available [20]. The
analytic function for this system takes here the follow-
ing form [19,21]: disregarding for the moment the much
weaker dispersion contribution in He2

VHe2(Rj) = c0
e−αRj

Rj
+

N∑

i=1

ci

(
Rje

−βRj
)i

(6)

where c0, ci, α and β are determined by a non linear fitting
procedure of our ab initio data. With N = 9 we obtained
a RMS of 0.07 cm−1 and a maximum error of 0.14 cm−1.

The fitting of VHe+
2
(Rj) requires some modification of

the form (6) because we have to include the much stronger
long range polarizability interaction. We have therefore
chosen the following analytic form

V (Rj) = V SR(Rj) (1 − f(Rj)) + f(Rj)V LR(Rj)

where the switching function [22] is

f(Rj) =






e exp
(
− 1

1 − xn

)
, x =

Rc

Rj
< 1,

0 x ≥ 1.

(7)

The resulting function is finally given as

VHe+
2
(Rj) = f

[
c0

e−αRj

Rj
+

N∑

i=1

ci

(
re−βRj

)i

]

− αpol

2R4
j

(1 − f(Rj)) (8)
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Table 1. Two-body parameters for V
He+2

(Rj) (Eq. (8)).

i ci

0 0.109871314(+02)

1 −0.398856858(+01)

2 0.948815040(+02)

3 −0.538670400(+04)

4 0.167824299(+06)

5 −0.321751784(+07)

6 0.370378724(+08)

7 −0.226612231(+09)

8 0.237177050(+09)

9 0.601725313(+10)

10 −0.318834945(+11)

12 0.814085212(+12)

13 −0.276188913(+13)

14 0.316397030(+13)

α
He+2

1.6

β
He+2

1.59848334

where the helium polarizability value, αpol, is given in the
previous section. Using N = 14, with optimized switch-
ing parameters Rc = 5.00973682 a0 and n = 3, we have
obtained deviations from the ab initio points inside the
energy range of −30 cm−1 < ∆E < 19 cm−1 with rel-
ative errors of about 0.1%. Parameters for this He+

2 fit
are reported in Table 1; our computed parameters for the
neutral interaction are not reported here, because it is
possible to use those given in reference [20].

3.2 The (3B) contributions

The evaluation of this contribution is made after sub-
tracting from the ab initio triatomic points the above fit-
ted 2B terms, according to equation (4). We used about
3,232 points of the entire pool of ab initio values exclud-
ing the most repulsive geometries, i.e. those whose energy
lies above the 3-atom break-up asymptote. The functional
form of the 3-body contribution is:

V (3B)(R1, R2, R3) =
M∑

i,j,k

dijkF ijk(ρ1, ρ2, ρ3) (9)

where the coefficients were included under the following
conditions:

i + j + k �= i �= j �= k

i + j + k ≤ M

i ≥ j ≥ k

and the function F ijk(ρ1, ρ2, ρ3) keeps into account the
correct symmetrization when needed

F ijk(ρ1ρ2ρ3) =





ρi
1ρ

j
2ρ

k
3 , i = j = k

ρi
1ρ

j
2ρ

k
3 + ρj

1ρ
k
2ρi

3 + ρk
1ρi

2ρ
j
3, i = j > k or i > j = k

ρi
1ρ

j
2ρ

k
3 + ρj

1ρ
k
2ρi

3 + ρk
1ρi

2ρ
j
3

+ρi
1ρ

k
2ρj

3 + ρj
1ρ

i
2ρ

k
3 + ρk

1ρj
2ρ

i
3, i > j > k

ρn = Rne−β(3)Rn , n = 1, 2, 3.

where the last condition is a consequence of the high sym-
metry of the system. β(3) is the only nonlinear coefficient.
In equation (9) no long-range part is present because all
the long range terms have been already included in the
2B terms. Using M = 14 (132 linear terms), we found an
optimized value of β(3) = 0.990436489 and a standard
deviation of 0.5644954 mHa. The most relevant devia-
tions lie in the C2v configurations, perhaps because of the
anomalous shape of these curves due to the non-adiabatic
interaction between two states. All the linear terms are
reported in Table 2.

3.3 Results

Using the full functional form obtained by summing all
the above contributions according to equation (4), we have
therefore plotted different parts of the full 3D surface in
Figure 5, where we can see some of the computed cuts.
As shown at the center of the figure, the coordinates are
r1 and r2, while the angle now is the one centered on
the atom indicated in the figure; the zero of the energy
is the full 3-atom break-up electronic energy. We can see
that the plots are very smooth in all the regions explored,
without any unrealistic oscillation. Furthermore, on each
of the plots a minimum energy reaction pathway (MEP)
has been shown. For the collinear approach geometry the
system experiences a lowering of the energy in the sym-
metric configuration (r1 = r2) due to the vicinity of the
triatomic minimum, while for smaller angles the pathway
goes through a barrier.

This aspect is better described in Figure 6, where we
compare the different MEP’s of the previous figure using
different arrangements.

In Figure 7 we present the energy along the bisector
of the quadrant (r1 = r2 direction). The curve labelled
“He+

2 (r)” that corresponds to a surface cut parallel to the
r2 axis for large r1 values, is put as an eye-guiding compar-
ison term between the “transition state” energy and the
asymptotic one: the minimum in the collinear configura-
tion corresponds to the global minimum of the triatomic
system. It occurs, as we had already found in [1], in a lin-
ear symmetric configuration for r1 = r2 = 2.34 a0, with
E0 = −2.645 eV, while the minimum of the diatomic sys-
tem to the asymptotic configuration lies at −2.466 eV.

In order to evaluate the errors in the more sensitive
region of our fitting, we also plot a special cut of the
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Table 2. Three-body linear parameters for V (3B)(R1, R2, R3) (Eq. (9)).

i, j, k dijk i, j, k dijk i, j, k dijk

1 1 0 −0.116357354(+01) 4 4 2 −0.284751563(+10) 11 1 0 0.105745708(+10)

1 1 1 0.264626472(+03) 5 3 2 0.695301644(+10) 5 4 4 0.103184726(+12)

2 1 0 0.730200921(+02) 5 4 1 0.187209641(+10) 5 5 3 −0.591686529(+12)

2 1 1 −0.966635761(+04) 5 5 0 0.118482508(+10) 6 4 3 0.247547154(+12)

2 2 0 0.250018521(+04) 6 2 2 −0.203137078(+10) 6 5 2 0.225930327(+12)

3 1 0 −0.183784890(+04) 6 3 1 −0.114572829(+10) 6 6 1 −0.188448192(+12)

2 2 1 0.965335702(+05) 6 4 0 0.571846341(+09) 7 3 3 −0.190654308(+12)

3 1 1 0.216579706(+06) 7 2 1 −0.951829960(+09) 7 4 2 −0.346644817(+12)

3 2 0 −0.362008810(+05) 7 3 0 0.343647915(+08) 7 5 1 0.589397180(+11)

4 1 0 0.150917204(+05) 8 1 1 0.852206371(+07) 7 6 0 0.101495564(+11)

2 2 2 −0.277401097(+07) 8 2 0 0.363418166(+08) 8 3 2 0.134911347(+12)

3 2 1 −0.608420665(+06) 9 1 0 0.220077043(+09) 8 4 1 0.684144595(+11)

3 3 0 0.870828468(+06) 4 4 3 −0.184413355(+11) 8 5 0 −0.224926137(+11)

4 1 1 −0.291699704(+07) 5 3 3 0.168362728(+11) 9 2 2 −0.611560568(+09)

4 2 0 0.153371073(+06) 5 4 2 0.353502438(+10) 9 3 1 −0.578602069(+11)

5 1 0 0.286179362(+05) 5 5 1 −0.167383595(+11) 9 4 0 0.722272752(+10)

3 2 2 0.124105283(+08) 6 3 2 −0.378657168(+11) 10 2 1 0.645380406(+10)

3 3 1 −0.702028346(+07) 6 4 1 0.580276547(+10) 10 3 0 0.862457219(+09)

4 2 1 0.840412475(+07) 6 5 0 −0.217293779(+10) 11 1 1 −0.114504405(+11)

4 3 0 −0.623522312(+07) 7 2 2 0.286957079(+11) 11 2 0 0.352759095(+10)

5 1 1 0.225991106(+08) 7 3 1 0.356682554(+10) 12 1 0 −0.938481424(+09)

5 2 0 −0.772716806(+06) 7 4 0 −0.151951980(+10) 5 5 4 −0.883552006(+12)

6 1 0 −0.134181683(+07) 8 2 1 −0.316434175(+10) 6 4 4 0.139364761(+13)

3 3 2 −0.101041716(+09) 8 3 0 0.296265511(+09) 6 5 3 0.371630684(+12)

4 2 2 0.101216889(+09) 9 1 1 −0.100506532(+10) 6 6 2 −0.533879090(+12)

4 3 1 0.647088389(+08) 9 2 0 0.637462755(+09) 7 4 3 −0.969248415(+12)

4 4 0 0.630884473(+08) 10 1 0 −0.607983303(+09) 7 5 2 0.211559996(+12)

5 2 1 −0.107629912(+09) 4 4 4 −0.157323898(+12) 7 6 1 0.122637126(+12)

5 3 0 0.177645370(+08) 5 4 3 0.870599145(+11) 7 7 0 −0.128862839(+11)

6 1 1 −0.954653281(+08) 5 5 2 −0.153450278(+12) 8 3 3 0.851955650(+12)

6 2 0 0.102932666(+08) 6 3 3 −0.876562746(+11) 8 4 2 0.315904623(+12)

7 1 0 0.112310935(+08) 6 4 2 0.939785399(+11) 8 5 1 −0.168659408(+12)

3 3 3 0.404299731(+09) 6 5 1 0.384235640(+11) 8 6 0 −0.389321203(+10)

4 3 2 −0.199055950(+09) 6 6 0 −0.325528284(+10) 9 3 2 −0.360288334(+12)

4 4 1 −0.554757373(+09) 7 3 2 0.573977420(+11) 9 4 1 0.173117265(+11)

5 2 2 −0.734148196(+09) 7 4 1 −0.497901521(+11) 9 5 0 0.264681926(+11)

5 3 1 −0.109400378(+09) 7 5 0 0.670665628(+10) 10 2 2 0.144482059(+12)

5 4 0 −0.259384119(+09) 8 2 2 −0.734326568(+11) 10 3 1 0.589652124(+11)

6 2 1 0.608213596(+09) 8 3 1 0.118964730(+11) 10 4 0 −0.179384235(+11)

6 3 0 −0.234607776(+08) 8 4 0 0.216607489(+10) 11 2 1 −0.276805777(+11)

7 1 1 0.186199180(+09) 9 2 1 0.953005999(+10) 11 3 0 0.339833885(+10)

7 2 0 −0.557080686(+08) 9 3 0 −0.169179065(+10) 12 1 1 0.121661074(+11)

8 1 0 −0.576837443(+08) 10 1 1 0.432784826(+10) 12 2 0 −0.215589008(+10)

4 3 3 −0.510322628(+08) 10 2 0 −0.236785034(+10) 13 1 0 0.263255752(+09)
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Fig. 5. Fitted PES
cuts along different
approaching geometries
and their minimum
energy paths.
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Fig. 6. Potential and corresponding r1, r2 values along the
minimum energy path.

surface in the C2v configuration, switching back to the
Jacobi coordinates. The resulting contour plots are shown
in Figure 8 where the discontinuity due to the presence
of the higher electronic state is clearly seen and occurs
when the system goes through the D3h geometry, i.e. when
R1 = R2 = R3. The C2v surface is also useful for a com-
parison with the only existing fit for this system as given
by reference [15], where the authors employed a very accu-
rate MRCI procedure over a small set of points around the
C2v configuration. At this point it is worth noticing that
our CCSD(T) approach has some obvious limitations for

2 4 6 8 10 12 14

ρ
-3

-2.5

-2

-1.5

-1

-0.5

0

V
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V
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Fig. 7. Fitted surface cuts along the quadrant bisector, i.e.
along the direction r1 = r2, with ρ = (r2

1 + r2
2)

1/2. The He+
2

curve represents the two asymptotic channels (r1 � r2 or the
opposite) and is put there for an visual comparison with the
present data (r1 = K, with K > 10 a0, or the opposite).

the present system, because it lacks a multideterminantal
initial guess for calculations around the surface regions
where different states intersect (C2v). We have already
discussed this problem in a previous paper [23]. In the
present case the strength of the interaction turns out to
be quite small outside a very narrow cone near the cross-
ing seam and our calculations describe this feature fairly
realistically, as one can gather by comparing our Figure 8
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Fig. 8. Isoenergetic contours of the potential in C2v config-
uration. The dashed line defines the D3h symmetry situation
for the complex and the corresponding seam between the 2A1

and 2B1 electronic states.

with the same figure (Fig. 1) of reference [15], where the
two separate electronic states (2A1 and 2B1) are reported.
Such a comparison is shown more quantitatively in Ta-
ble 3, where our fitted points are reported and compared
with the lower energy adiabatic curve calculated in [15],
together with the difference values ∆V .

4 The rotovibration-to-translation coupling
potential

The first step in the study of the quantum dynamics of
the title system requires the evaluation of the coupling
potentials between the rotovibrational degrees of freedom
of the dimer ion and the relative translational motion, the
(R,V-T) coupling potential:

〈ϕi(r)| V (r, R, θ) |ϕj(r)〉 = Vij(R, θ) (10)

where (r, R, θ) are the Jacobi coordinates which describe
the internal vibrational diatomic motion (r), the atom-
diatomic distance (R) and their relative orientation an-
gle, θ. The physical meaning of these matrix elements is
fairly evident: the diagonal terms represent the asymp-
totic (diabatic) averaging of the full PES over each vi-
brational target state, implicitly assuming that such state
does not change much during the collisional interaction.
On the other hand the off diagonal terms describe the
effects by which the triatomic potential couples different
asymptotic states of the diatomic system during the scat-
tering process, thereby allowing transitions between them
due to the impinging projectile, and thus describing the

Table 3. A comparison between the results from our analytical
fitting (Vfit) and the ab initio energies computed by Knowles
et al. [15] in the C2v geometry (VKM , the lower-lying value
between the two computed curves is reported). Distances in Å,
energies in eV.

R1 R2, R3 VKM Vfit ∆V

0.8 1.4 −0.24085 −0.10113 0.13972

1.0 1.3 −0.85326 −0.69383 0.15943

1.2 1.2 0.54792 0.38542 −0.16250

1.4 1.1 −0.82711 −0.84767 −0.02056

1.6 1.0 −0.98164 −1.00184 −0.02020

0.8 2.0 −0.97661 −0.92258 0.05403

1.0 1.9 −2.38498 −2.34819 0.03679

1.2 1.8 −2.26027 −2.20583 0.05444

1.4 1.7 −1.64225 −1.51908 0.12317

1.6 1.6 −0.88850 −0.92234 −0.03384

1.8 1.5 −1.56543 −1.58321 −0.01778

2.0 1.4 −2.07621 −2.05456 0.02165

2.2 1.3 −2.44520 −2.46054 −0.01534

2.4 1.2 −2.63230 −2.66504 −0.03274

1.0 2.5 −2.42142 −2.38657 0.03485

1.2 2.4 −2.38702 −2.35191 0.03511

1.4 2.3 −1.92068 −1.88131 0.03937

1.6 2.2 −1.40930 −1.35286 0.05644

1.8 2.1 −0.97179 −0.88651 0.08528

2.0 2.0 −0.62414 −0.63772 −0.01358

2.2 1.9 −0.92466 −0.94351 −0.01885

2.4 1.8 −1.21942 −1.21453 0.00489

2.6 1.7 −1.52119 −1.51087 0.01032

deformations of the vibrating ionic dimer due to its inter-
action with the impinging projectile.

The analysis of the vibrational coupling strength for
each Vij term is crucial for evaluating the relative effi-
ciency of the energy transfer dynamics between any two
(i, j) vibrational target states. This aspect of the prob-
lem, in fact, will be analysed in detail (via the present
interaction) in a following paper [13]. In our calculations
we considered all the bound vibrational levels, for which
the integrals of equation (10) are found to have converged
within the radial region mapped by the triatomic ab ini-
tio potential: it allowed us to include up to νmax = 19.
Looking at the strength of such terms at different radial
distances and orientations allow us to estimate the likely
efficiency of the collision dynamics. We further employed
the previous 3D fitting to generate the corresponding cou-
pling elements up to the top bound state of He+

2 (ν = 23).
We show in Figure 9 a sampling of their behaviour for dif-
ferent vibrational levels. In the upper panel a cut at θ = 0
for some of the ∆ν = 1 matrix elements in their attractive
region is shown and is compared with their corresponding
diagonal elements that give us the elastic channel cou-
plings described above. We clearly see that the potential
wells are invariably strong, never less than 1000 cm−1,
even when the energy spacings between the levels become
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Fig. 9. Vibrational coupling potentials for the He+
2 + He in-

teraction in the linear configuration (θ = 0). Single quantum
transitions (∆ν = 1, upper panel) from different initial levels
compared with the corresponding elastic channel and multiple
quantum transitions from the ground state (lower panel). In
the latter the first element is scaled by a factor of 10.

very large (for levels far apart on the vibrational ladder)
and that the off-diagonal matrix elements are always com-
parable in size to the diagonal ones. The lower panel of the
same figure shows a cut at θ = 0 through the couplings for
transitions with ∆ν > 1: it is evident the large difference
in magnitude between them (the single quantum term in
the figure is scaled by a factor of 10), but it is also useful
to note that the couplings do not go to zero even when
∆ν = 4. This is a useful piece of information because it
leads us to think that relaxations to the lower levels would
still be contributing for multiple step processes, and thus
the overall relaxation process could be made faster be-
cause of them. One should also keep in mind that the
present potential also naturally includes coupling of the
dimer rotational motion with the impinging He motion
via the angular anisotropy of the full surface. We have al-
ready discussed this aspect of the coupling in [1] and will
also further analyse it in [13].
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Fig. 10. He+
2 −He Vibrational Coupling PES in Cartesian

coordinates: some selected matrix elements.

In Figure 10 we show contour maps in Cartesian coor-
dinates of the orientational behaviour of some of the ma-
trix elements of our coupling potential. The limits of the
Jacobi representation discussed before is the cause of some
spurious oscillations introduced by the visualization soft-
ware. However, one can clearly see that the single quantum
transitions are always behaving smoothly and maintain
their strength over a fairly broad angular range, although
the maxima invariably appear in the collinear configura-
tion. The angular regions of the surface close to the C2v ge-
ometry show in fact a fairly small coupling strength up to
relatively short radial distances (around 4 a0). This could
be understood when considering that an He atom coming
along this approach causes negligible perturbation of the
target ion unless it strikes it exactly at its center of mass.
On the other hand, in the collinear region the interaction
is always strong, as is within the angular cone close to
it, where the interaction is driven by the exchange, short
range, interaction terms. The shape of the inelastic cou-
pling surface for the V02 matrix element is shown in the
upper right panel of Figure 10. It is more complicated in
shape than the previous coupling element and the pre-
ferred approaching geometry is now that of 90◦, where
the coupling strength is even larger than that for the sin-
gle quantum coupling surfaces discussed before. We can
again suggest that at any relative orientation of approach
some vibrational coupling that connects a given level with
the next one, or with a more distant one in the sequential
ladder of the target asymptotic vibrational states, seems
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always to be present. The orientational dependence of the
coupling terms also tells us that rotational and vibrational
couplings are closely entangled in the present system and
will inevitably play a common role in the dynamics, as we
shall be discussing in the following paper [13].

5 Present conclusions

A new, accurate Potential Energy Surface has been com-
puted for the system He+

3 using CCSD(T) on a very dense
spatial grid. An accurate three-body fitting procedure has
been carried out obtaining a well-behaving analytic de-
scription of the full interaction that can be employed for
dynamical studies involving rearrangement collisions. The
coefficients file, as well as the subroutine generating the
potential, are also available on request from the authors.
The (R,V-T) coupling potential has also been computed
involving all the bound vibrational states of the ionic
dimer over a broad angular range of the triatomic po-
tential, and the resulting values reveal very large coupling
strength among most of them, with a dominance of sin-
gle quantum jumps but also with considerable strength
being allotted to larger ∆ν matrix elements. This is in-
deed an indication of the likely efficiency of the collisional
relaxation mechanism from an excited He+

2 interacting
with surrounding neutral He atoms in large helium clus-
ters, as we shall analyse later [13]. In our following work
(part III [13]) we will thus focus in greater detail on the
evaluation of that process cross sections by modelling the
collisions and the cooling rates. Such a study will allow to
understand more quantitatively the relative time scales of
the post-ionization dynamics.

We are grateful to Dr. Rocco Martinazzo for his help in the
choice and use of the fitting procedure and to Prof. Miguel
Paniagua for helping us with the use of GFIT3C. The financial
support of the CASPUR Supercomputing Center, the Scientific
Research Committee of the University of Rome “La Sapienza”
and of the INFM is also gratefully acknowledged.
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